

MCQOPTIONS
Saved Bookmarks
This section includes 22 Mcqs, each offering curated multiple-choice questions to sharpen your Data Structures and Algorithms knowledge and support exam preparation. Choose a topic below to get started.
1. |
Consider the following segment of C codeint j, n;j = 1;while (j<=n) j = j*2;The number of comparisons made in the execution of the loop for any n > 0 is |
A. | \(⌊log_2 n⌋^* n\) |
B. | \(n\) |
C. | \(⌊log_2 n⌋\) |
D. | \(⌊log_2 n⌋+1\) |
Answer» E. | |
2. |
Consider the following functions from positive integers t real numbers:\(10,\sqrt n ,\;n,{\log _2}n,\frac{{100}}{n}\)The CORRECT arrangement of the above functions in increasing order of asymptotic complexity is: |
A. | \({\log _2}n,\frac{{100}}{n},\;10\;,\sqrt n ,\;n\) |
B. | \(\frac{{100}}{n},\;10\;,{\log _2}n,\;\sqrt n ,\;n\) |
C. | \(10.\frac{{100}}{n},\;\sqrt {n,} {\log _2}n,\;n\) |
D. | \(\frac{{100}}{n},{\log _2}n,\;10,\sqrt n ,\;n\) |
Answer» C. \(10.\frac{{100}}{n},\;\sqrt {n,} {\log _2}n,\;n\) | |
3. |
Let f(n) = n and g(n) = n(1 + sin n), where n is a positive integer. Which of the following statements is/are correct?I. f(n) = O(g(n))II. f(n) = Ω(g(n)) |
A. | Only I |
B. | Only II |
C. | Both I and II |
D. | Neither I nor II |
Answer» E. | |
4. |
Consider the algorithm that solves problems of size n by recursively solving two sub problems of size n - 1 and then combining the solutions in constant time. Then the running time of the algorithm would be: |
A. | O(2n) |
B. | O(logn) |
C. | O(nlogn) |
D. | O(n2) |
Answer» B. O(logn) | |
5. |
Consider the following three functions.f1 = 10n f2 = nlogn f3 = n√nWhich one of the following options arranges the functions in the increasing order of asymptotic growth rate? |
A. | f1 , f2, f3 |
B. | f2, f1, f3 |
C. | f3, f2, f1 |
D. | f2, f3, f1 |
Answer» E. | |
6. |
If algorithm A and another algorithm B take log2(n) and √n microseconds, respectively, to solve a problem, then the largest size n of a problem these algorithms can solve. respectively. in one second are_____ and _____. |
A. | \({2^{{{10}^6}}}and\;{10^6}\) |
B. | \({2^{{{10}^6}}}and\;{10^{{12}}}\) |
C. | \({2^{{{10}^6}}}and\;{6.10^6}\) |
D. | \({2^{{{10}^6}}}and\;{6.10^{12}}\) |
Answer» C. \({2^{{{10}^6}}}and\;{6.10^6}\) | |
7. |
If positive function f(n) is given below as:f(n) = a0 + a1n + a2n2 + a3n3 + .......amnm then for positive n and am > 0, f(n) is: |
A. | θ(na) |
B. | θ(mn) |
C. | θ(am) |
D. | θ(nm) |
Answer» E. | |
8. |
Consider the equality \(\mathop \sum \limits_{i = 0}^n {i^3} = X\) and the following choices for |
A. | Only I |
B. | Only II |
C. | I or III or IV but not II |
D. | II or III or IV but not I |
Answer» D. II or III or IV but not I | |
9. |
Consider the following C function.int fun1(int n) {int i, j, k, p, q = 0;for (i = 1; i p = 0;for (j = n; j > 1; j = j/2) ++ p;for (k = 1; k ++ q;}return q;}Which one of the following most closely approximates the return value of the function fun1? |
A. | n3 |
B. | n(log2) |
C. | n log n |
D. | n log (log n) |
Answer» E. | |
10. |
Consider the following recurrenceT(n) = 2T(\(\sqrt n\)) + 1T(1) = 1Which of the following is true? |
A. | T(n) = O(log log n) |
B. | T(n) = O(log n) |
C. | T(n) = O(\(\sqrt n\)) |
D. | T(n) = O(n) |
Answer» C. T(n) = O(\(\sqrt n\)) | |
11. |
In a balanced binary search tree with n elements, what is the worst case time complexity of reporting all elements in range [a, b]? Assume that the number of reported elements is k. |
A. | Θ(log n) |
B. | Θ(log n + k) |
C. | Θ(k log n) |
D. | Θ(n log k) |
Answer» C. Θ(k log n) | |
12. |
For constants a ≥ 1 and b > 1, consider the following recurrence defined on the non-negative integers:\(T\left( n \right) = a.T\left( {\frac{n}{b}} \right) + f\left( n \right)\)Which one of the following options is correct about the recurrence T(n)? |
A. | If f(n) is \(\frac{n}{{{{\log }_2}(n)}}\), then T(n) is θ(log2(n)). |
B. | If f(n) is n log2(n), then T(n) is θ(n log2(n)). |
C. | If f(n) is O(nlogb(a) - ϵ) for some ϵ > 0, then T(n) is θ(nlogb(a)). |
D. | If f(n) is θ(nlogb(a)), then T(n) is θ(nlogb(a)) |
Answer» D. If f(n) is θ(nlogb(a)), then T(n) is θ(nlogb(a)) | |
13. |
An algorithm with three nested loops will have a Big-O efficiency of (a size on n). |
A. | O(n3) |
B. | O(3n) |
C. | O(n4) |
D. | O(n2) |
Answer» B. O(3n) | |
14. |
Consider the following pseudo code. What is the total number of multiplications to be performed?D = 2for i = 1 to n dofor j = i to n dofor k = j + 1 to n doD = D * 3 |
A. | Half of the product of the 3 consecutive integers. |
B. | One-third of the product of the 3 consecutive integers. |
C. | One-sixth of the product of the 3 consecutive integers. |
D. | None of the above |
Answer» D. None of the above | |
15. |
An algorithm is made up of 2 modules M1 and M2.If order of M1 is f(n) and that of M2 is g (n), then the order of the algorithm is |
A. | f(n) x g(n) |
B. | f(n) + g (n) |
C. | min (f(n), g(n)) |
D. | max (f(n), g (n)) |
Answer» E. | |
16. |
Consider the recurrence function \(T\left( n \right) = \left\{ {\begin{array}{*{20}{c}} {2T\left( {\sqrt n } \right) + 1,\;\;\;n > 2}\\ {2,\;\;\;0 < n \le 2} \end{array}} \right.\) Then T(n) in terms of Θ notation is |
A. | Θ (log log n) |
B. | Θ (log n) |
C. | Θ (√n) |
D. | Θ (n) |
Answer» C. Θ (√n) | |
17. |
Consider the following C function.int fun(int n) { int i, j; for (i = 1; i < = n; i++) { for (j = 1; j < n; j + = i) { printf (‘’ %d %d’’, i, j); } }}Time complexity of fun in terms of Θ notation is |
A. | Θ (n√n) |
B. | Θ (n2) |
C. | Θ (nlog n) |
D. | Θ (n2log n) |
Answer» D. Θ (n2log n) | |
18. |
For parameters a and b, both of which are ω(1), T(n) = T(n1/a) + 1, and T(b) = 1.Then T(n) is |
A. | Θ(loga logb n) |
B. | Θ(logab n) |
C. | Θ(logb loga n) |
D. | Θ(log2 log2 n) |
Answer» B. Θ(logab n) | |
19. |
Consider the programvoid function(int n) {int i, j, count=0;for (i=n/2; i <= n; i++)for (j = 1; j <= n; j = j*2)count++;}The complexity of the program is |
A. | O(log n) |
B. | O(n2) |
C. | O(n2logn) |
D. | O(n log n) |
Answer» E. | |
20. |
Consider the following recurrence relation.\(T(n) = \left\{ {\begin{array}{*{20}{c}} {T(n/2) + T(2n/5) + 7n \ \ \ if\ n > 0}\\ {1\ \ \ \ \ \ \ if\ n = 0} \end{array}} \right.\)Which one of the following option is correct? |
A. | T(n) = Θ(n log n) |
B. | T(n) = Θ(n5/2) |
C. | T(n) = Θ((log n)5/2) |
D. | T(n) = Θ(n) |
Answer» E. | |
21. |
Match the algorithms with their time complexities: Algorithm Time complexity(P)Towers of Hanoi with n disks(i)Θ (n2)(Q)Binary search given n sorted numbers(ii)Θ (n log n)(R)Heap sort given n numbers at the worst case(iii)Θ (2n)(S)Addition of two n × n matrices(iv)Θ (log n) |
A. | P – (iii), Q – (iv), R – (i), S – (ii) |
B. | P – (iv), Q – (iii), R – (i), S – (ii) |
C. | P – (iii), Q – (iv), R – (ii), S – (i) |
D. | P – (iv), Q – (iii), R – (ii), S – (i) |
Answer» D. P – (iv), Q – (iii), R – (ii), S – (i) | |
22. |
Consider the recurrence relation :\(T(n) = 8T \left(\frac{n}{2}\right)+Cn, if \;n > 1\)= b, if n = 1Where b and c are constants.The order of the algorithm corresponding to above recurrence relation is : |
A. | n |
B. | n2 |
C. | n lg n |
D. | n3 |
Answer» E. | |