Explore topic-wise MCQs in Antenna Parameters.

This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Antenna Parameters knowledge and support exam preparation. Choose a topic below to get started.

1.

What should be the noise figure value at which the effective noise temperature equals to room temperature?

A. 2
B. 1
C. 0
D. 1/T_(o )
Answer» B. 1
2.

Find the effective noise temperature if noise figure is 3 at room temperature (290K)?

A. 290K
B. 580K
C. 289K
D. 195K
Answer» C. 289K
3.

Effective noise temperature Te in terms of noise figure is ____

A. T<sub>e</sub>=T<sub>o</sub> (F-1)
B. T<sub>e</sub>=T<sub>o</sub>/(F-1)
C. T<sub>e</sub>=T<sub>o</sub>/(F+1)
D. T<sub>e</sub>=T<sub>o</sub> (F+1)
Answer» B. T<sub>e</sub>=T<sub>o</sub>/(F-1)
4.

Expression for noise figure F related to the effective noise temperature Te is ____

A. (F=1+ frac{T_e}{T_o} )
B. (F=1+ frac{T_0}{T_e} )
C. (F=1- frac{T_e}{T_o} )
D. (F=1- frac{T_0}{T_e} )
Answer» B. (F=1+ frac{T_0}{T_e} )
5.

Which expression suits best when the solid angle obtained by the noise source is less than antenna solid angle?

A. P<sub>A</sub> <sub>A</sub>=P<sub>B</sub> <sub>B</sub> and T<sub>A</sub>= ( frac{ Omega_B}{ Omega_A} T_B )
B. P<sub>A</sub> <sub>B</sub>=P<sub>B</sub> <sub>A</sub> and T<sub>A</sub>= ( frac{ Omega_B}{ Omega_A} T_B )
C. T<sub>A</sub>= ( frac{ Omega_A}{ Omega_B} T_B ) and P<sub>A</sub> <sub>B</sub>=P<sub>B</sub> <sub>A</sub>
D. T<sub>A</sub>= ( frac{ Omega_A}{ Omega_B} T_B ) and P<sub>A</sub> <sub>A</sub>=P<sub>B</sub> <sub>B</sub>
Answer» B. P<sub>A</sub> <sub>B</sub>=P<sub>B</sub> <sub>A</sub> and T<sub>A</sub>= ( frac{ Omega_B}{ Omega_A} T_B )
6.

What is the relation between noise temperature introduced by beam TB and the antenna temperature TA when the solid angle obtained by the noise source is greater than antenna solid angle?

A. T<sub>A</sub>= T<sub>B</sub>
B. T<sub>A</sub> &gt; T<sub>B</sub>
C. T<sub>A</sub> &lt; T<sub>B</sub>
D. T<sub>A</sub> T<sub>B</sub>
Answer» B. T<sub>A</sub> &gt; T<sub>B</sub>
7.

Total noise power of the system is P=_____

A. k(T<sub>A</sub>+T<sub>R</sub>)B
B. k(T<sub>A</sub>+T<sub>R</sub>)/B
C. k(T<sub>R</sub>)B
D. kB/T<sub>sys</sub>
Answer» B. k(T<sub>A</sub>+T<sub>R</sub>)/B
8.

Overall receiver noise temperature expression if T1, T2 are amplifier 1, 2, and so on noise Temperature and G1, G2, and so on are their gain respectively is_____

A. T = (T_1+ frac{T_2}{G_1}+ frac{T_3}{G_1 G_2}+ )
B. T = T<sub>1</sub>+T<sub>2</sub> (1-G<sub>1</sub>)+T<sub>3</sub>(1-G<sub>1</sub>G<sub>2</sub>)+
C. T = (T_1+ frac{T_2}{(1-G_1)}+ frac{T_3}{(1-G_1 G_2)}+ )
D. T = T<sub>1</sub>+T<sub>2</sub> (G<sub>1</sub>)+T<sub>3</sub>(G<sub>1</sub>G<sub>2</sub>)+
Answer» B. T = T<sub>1</sub>+T<sub>2</sub> (1-G<sub>1</sub>)+T<sub>3</sub>(1-G<sub>1</sub>G<sub>2</sub>)+
9.

If the reflection co-efficient is then emissivity is ___

A. 3/4
B. 1/4
C. 1/2
D. 3/2
Answer» B. 1/4
10.

Relation between brightness temperature TB and physical body temperatureTp is ____

A. T<sub>B</sub>= ((1- mid Gamma_s mid^2) T_p )
B. T<sub>B</sub>= (T_p/(1- mid Gamma_s mid^2) )
C. T<sub>B</sub>= ((1- mid Gamma_s mid)T_p )
D. T<sub>B</sub>= ((1- mid Gamma_s mid)^2 T_p )
Answer» B. T<sub>B</sub>= (T_p/(1- mid Gamma_s mid^2) )