The sides a, b, c (taken in order) of a ΔABC are in A.P. If \(\rm \cos \alpha =\frac{a}{b+c}\), \(\rm \cos \beta =\frac{b}{c+a}\), \(\rm \cos \gamma =\frac{c}{a+b}\), then \(\rm \tan^{2}\frac{\alpha }{2}+\tan^{2}\dfrac{\gamma }{2}\) is equal to:
[Note: All symbols used have usual meanings in triangle ΔABC.]
1. 1
2. \(\rm \frac12\)
3. \(\rm \frac23\)
4. \(\rm \frac13\)
Correct Answer – Option 3 : \(\rm \frac23\)
Concept:
Trigonometry: \(\rm \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\).
Calculation:
Since a, b and c are in A.P., we have 2b = a + c ⇒ c = 2b – a.
It is given that \(\rm \cos \alpha =\frac{a}{b+c}\).
Using the half-angle formula \(\rm \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\) and the fact that c = 2b – a, we get:
⇒ \(\rm \frac{1-{{\tan }^{2}}\frac{\alpha }{2}}{1+{{\tan }^{2}}\frac{\alpha }{2}}=\frac{a}{3b-a}\)
⇒ \(\rm \frac{2{{\tan }^{2}}\tfrac{\alpha }{2}}{2}=\frac{(3b-a)-a}{(3b-a)+a}\)
⇒ \(\rm {{\tan }^{2}}\frac{\alpha }{2}=\frac{3b-2a}{3b}\) …(1)
Similarly, \(\rm {{\tan }^{2}}\frac{\gamma }{2}=\frac{2a-b}{3b}\) …(2)
Now, \(\rm {{\tan }^{2}}\frac{\alpha }{2}+{{\tan }^{2}}\frac{\gamma }{2}\)
= \(\rm \frac{3b-2a}{3b}+\frac{2a-b}{3b}\) … [Using (1) and (2)]
= \(\rm \frac{2b}{3b}\)
= \(\frac{2}{3}\)