Show that for a particle in linear S.H.M., the average kinetic energy over a period of oscillation equals the average potential energy over the same period.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Correct Answer – `y = a sin omegat` , `v = delomegat`
Kinetic energy, `E_(k) = (1)/(2)mv^(2) = E_(k) = (1)/(2)ma^(2)omega^(2)cos^(2)omegat`
Potential energy, kinectic energy, `E_(k) = (1)/(2)mv^(2) = E_(k) = (1)/(2)ma^(2)omega^(2)cos^(2)omegat`
Average kinetic energy over one cycle
`= (1)/(T)(int^(T)_(0)) E_(k)dt`
`= (1)/(T)(int_(0)^(T))(1)/(2)ma^(2)omega^(2)cos^(2)omegatdt`
`= (1)/(2T)ma^(2)omega^(2)int_(0)^(T)cos^(2)omegatdt`
`= (1)/(2T)ma^(2)omega^(2)int_(0)^(T)(1)/(2)(1 + cos2omegat)dt | or {:(cos2theta = 2cos^(2)theta – 1),(2cos^(2)theta = 1 + cos2theta):}` = (1)/(4Tma^(2)omega^(2)[int_(0)^(T)1dt+int_(0)^(T)cos2omegat dt]` a
`= (ma^(2)omega^(2))/(4T)[T+|(sin2omegat)/(2omega)|_(0)^(T)]`
`= (ma^(2)omega^(2))/(4T)[T + (1)/(2omega)(0 – 0)} = (1)/(4)momega^(2)a^(2)`
Average potential energy over cycle
`(1)/(T)int_(0)^(T)E_(p)dt = (1)/(T)int_(0)^(T)(1)/(2)momega^(2)a^(2)sin^(2)omegat`
`= (1)/(2T)momega^(2)a^(2)int_(0)^(T)sin^(2)omegatdt`
`(1)/(2T)momega^(2)a^(2)int_(0)^(T)(1)/(2)(1 – cos2theta)dt`
`|or{:(cos2theta=1-2sin^(2)theta),(2sin^(2)theta=1cos2theta):}=(1)/(4T)momega^(2)a^(2)[int_(0)^(T)cos2omegatdt]`
`= (1)/(4) momega^(2)a^(2)`