

MCQOPTIONS
Saved Bookmarks
1. |
Consider two series \(\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^{n - 1\;}}{a_n}\) and \(\mathop \sum \limits_{n = 2}^\infty {\left( { - 1} \right)^{n - 1\;}}{b_n}\), where \({a_n} = \frac{1}{{\sqrt n }},\;{b_n} = \frac{{{x^n}}}{{n\left( {n - 1} \right)}}\) 0 < x < 1. Then: |
A. | \(\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^{n - 1\;}}{a_n}\) is convergent but \(\mathop \sum \limits_{n = 2}^\infty {\left( { - 1} \right)^{n - 1\;}}{b_n}\) is divergent. |
B. | both series are convergent |
C. | \(\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^{n - 1\;}}{a_n}\) is divergent but \(\mathop \sum \limits_{n = 2}^\infty {\left( { - 1} \right)^{n - 1\;}}{b_n}\) is convergent |
D. | both series are divergent. |
Answer» C. \(\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^{n - 1\;}}{a_n}\) is divergent but \(\mathop \sum \limits_{n = 2}^\infty {\left( { - 1} \right)^{n - 1\;}}{b_n}\) is convergent | |