1.

A monochromatic plane wave of wavelength 500 μm is propagating in the direction as shown in the figure below. \(\mathop {{E_i}}\limits^ \to \), \(\mathop {{E_r}}\limits^ \to \) and \(\mathop {{E_t}}\limits^ \to \) denotes incident,reflected and transmitted electric field vectors associate with the wave.The expression for \(\mathop {{E_i}}\limits^ \to \) and \(\mathop {{E_r}}\limits^ \to \) are

A. \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} - {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x + y} \right)}}{{5\sqrt 2 }}}}V/m\) and \(0.10\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} + {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x - y} \right)}}{{5\sqrt 2 }}}}V/m\)
B. \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} - {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x + y} \right)}}{{5\sqrt 2 }}}}V/m\) and \( - 0.10\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} + {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x - y} \right)}}{{5\sqrt 2 }}}}V/m\)
C. \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} + {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x - y} \right)}}{{5\sqrt 2 }}}}V/m\) and \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} - {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x + y} \right)}}{{5\sqrt 2 }}}}V/m\)
D. \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} - {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x + y} \right)}}{{5\sqrt 2 }}}}V/m\) and \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} + {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x - y} \right)}}{{5\sqrt 2 }}}}V/m\)
Answer» B. \(\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} - {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x + y} \right)}}{{5\sqrt 2 }}}}V/m\) and \( - 0.10\frac{{{E_0}}}{{\sqrt 2 }}\,\left( {{{\hat a}_x} + {{\hat a}_y}} \right){e^{ - j\frac{{2\pi \times {{10}^4}\left( {x - y} \right)}}{{5\sqrt 2 }}}}V/m\)


Discussion

No Comment Found

Related MCQs